If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x^2-32=17
We move all terms to the left:
1/3x^2-32-(17)=0
Domain of the equation: 3x^2!=0We add all the numbers together, and all the variables
x^2!=0/3
x^2!=√0
x!=0
x∈R
1/3x^2-49=0
We multiply all the terms by the denominator
-49*3x^2+1=0
Wy multiply elements
-147x^2+1=0
a = -147; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-147)·1
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{3}}{2*-147}=\frac{0-14\sqrt{3}}{-294} =-\frac{14\sqrt{3}}{-294} =-\frac{\sqrt{3}}{-21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{3}}{2*-147}=\frac{0+14\sqrt{3}}{-294} =\frac{14\sqrt{3}}{-294} =\frac{\sqrt{3}}{-21} $
| 2(3x+4)=6x | | 16+3p=6-6p-8 | | 3x+8-(4x-1-9x)=6x-1 | | |f|-1/5=3/15 | | (x^2+2)^2+(x^2-3)^2=625 | | 3/4(x+12)=12 | | 6c+11=2c+9 | | 10x-15=24x-30 | | 2x*5x=40 | | 2x-15=39 | | 2x–15=39 | | -3/4h=-h-3 | | 2x•5x=40 | | 2a-(4a+5)=-2a+5 | | 2(9-3)=3a+6 | | 2a-(4a+5)=2a-(4a+5) | | 3x×(2+5×x)=(2+5×x)×(x+1) | | 2(4x-2)-2=2(2x+5) | | 6−h=5 | | 4^4x=40 | | 22/360=30/x | | x*37.80=7.56 | | 4(y+8)-3(y+15)=3(y-1) | | t/8-6=1 | | -3(h+12)+-6=0 | | 8−z=4 | | 3x-8x= | | 4b^2=3 | | 4y+36-3y+15=3y-3 | | 3(u−15)−-4=10 | | 12y+25=-64 | | 2^(7-6x)=17 |